CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery.

نویسندگان

  • Sara Ricciardi
  • Charlotte Kilstrup-Nielsen
  • Thierry Bienvenu
  • Aurélia Jacquette
  • Nicoletta Landsberger
  • Vania Broccoli
چکیده

Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause severe neurodevelopmental disorders including infantile spasms, encephalopathy, West-syndrome and an early-onset variant of Rett syndrome. CDKL5 is a serine/threonine kinase whose involvement in Rett syndrome can be inferred by its ability to directly bind and mediate phosphorylation of MeCP2. However, it remains to be elucidated how CDKL5 exerts its function. Here, we report that CDKL5 localizes to specific nuclear foci referred to as nuclear speckles in both cell lines and tissues. These sub-nuclear structures are traditionally considered as storage/modification sites of pre-mRNA splicing factors. Interestingly, we provide evidence that CDKL5 regulates the dynamic behaviour of nuclear speckles. Indeed, CDKL5 overexpression leads to nuclear speckle disassembly, and this event is strictly dependent on its kinase activity. Conversely, its down-regulation affects nuclear speckle morphology leading to abnormally large and uneven speckles. Similar results were obtained for primary adult fibroblasts isolated from CDKL5-mutated patients. Altogether, these findings indicate that CDKL5 controls nuclear speckle morphology probably by regulating the phosphorylation state of splicing regulatory proteins. Nuclear speckles are dynamic sites that can continuously supply splicing factors to active transcription sites, where splicing occurs. Notably, we proved that CDKL5 influences alternative splicing, at least as proved in heterologous minigene assays. In conclusion, we provide evidence that CDKL5 is involved indirectly in pre-mRNA processing, by controlling splicing factor dynamics. These findings identify a biological process whose disregulation might affect neuronal maturation and activity in CDKL5-related disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking Splicing to Pol II Transcription Stabilizes Pre-mRNAs and Influences Splicing Patterns

RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice...

متن کامل

SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles

The mammalian cell nucleus is compartmentalized into nonmembranous subnuclear domains that regulate key nuclear functions. Nuclear speckles are subnuclear domains that contain pre-mRNA processing factors and noncoding RNAs. Many of the nuclear speckle constituents work in concert to coordinate multiple steps of gene expression, including transcription, pre-mRNA processing and mRNA transport. Th...

متن کامل

NSrp70 is a novel nuclear speckle-related protein that modulates alternative pre-mRNA splicing in vivo

Nuclear speckles are known to be the storage sites of mRNA splicing regulators. We report here the identification and characterization of a novel speckle protein, referred to as NSrp70, based on its subcellular localization and apparent molecular weight. This protein was first identified as CCDC55 by the National Institutes of Health Mammalian Gene Collection, although its function has not been...

متن کامل

Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain.

"Splicing speckles" are major nuclear domains rich in components of the splicing machinery and polyA(+) RNA. Although speckles contain little detectable transcriptional activity, they are found preferentially associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for splicing, with some ...

متن کامل

Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains

A subpopulation of the largest subunit of RNA polymerase II (Pol II LS) is located in 20-50 discrete subnuclear domains that are closely linked to speckle domains, which store splicing proteins. The speckle-associated fraction of Pol II LS is hyperphosphorylated on the COOH-terminal domain (CTD), and it is highly resistant to extraction by detergents. A diffuse nucleoplasmic fraction of Pol II ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 23  شماره 

صفحات  -

تاریخ انتشار 2009